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Abstract—Background: Refactoring is a critical task in soft-
ware maintenance and is generally performed to enforce the
best design and implementation practices or to cope with design
defects. Several studies attempted to detect refactoring activities
through mining software repositories allowing to collect, analyze
and get actionable data-driven insights about refactoring prac-
tices within software projects.

Aim: We aim at identifying, among the various quality models
presented in the literature, the ones that are more in-line with the
developer’s vision of quality optimization, when they explicitly
mention that they are refactoring to improve them.

Method: We extract a large corpus of design-related refactor-
ing activities that are applied and documented by developers
during their daily changes from 3,795 curated open source
Java projects. In particular, we extract a large-scale corpus of
structural metrics and anti-pattern improvement changes, from
which we identify 1,245 quality improvement commits with their
corresponding refactoring operations, as perceived by software
engineers. Thereafter, we empirically analyze the impact of these
refactoring operations on a set of common state-of-the-art design
quality metrics.

Results: The statistical analysis of the obtained results shows
that (i) a few state-of-the-art metrics are more popular than
others; and (ii) some metrics are being more emphasized than
others.

Conclusions: We verify that there are a variety of structural
metrics that can represent the internal quality attributes with
different degrees of improvement and degradation of software
quality. Most of the metrics that are mapped to the main quality
attributes do capture developer intentions of quality improvement
reported in the commit messages, but for some quality attributes,
they don’t.

Index Terms—refactoring, software quality, empirical study

I. INTRODUCTION

Being the de facto practice of improving software design
without altering its external behavior, refactoring has been the
focus on several studies, which aim to support its application
by identifying refactoring opportunities, in the source code,
through the optimization of structural metrics, and the removal
of code smells [8], [16], [21], [36], [46], [47], [49]. Therefore,
several studies have been analyzing the impact of refactoring
on existing literature quality attributes, structural metrics, and
code smells [2], [3], [5], [6], [17], [25], [35], [50]. The
spectrum of quality attributes, structural metrics and code
smells, represent the main driver for studies aiming to imitate
the human decision making, and automate the refactoring
process.

Despite the growing effort in recommending refactorings
by structural metrics optimization and code smells removal,
there is very little evidence on whether developers follow
that intention when refactoring their code. A recent study by
Pantiuchina et al. [31] has shown that there is misperception
between the state-of-the-art structural metrics, widely used
as indicators for refactoring, and what developers actually
consider to be an improvement their source code. Thus, there
is a need to distinguish, among all the structural metrics,
typically used in refactoring literature, the particular ones that
are of a better representation of the developers’ perception of
software quality improvement.

This paper aims in identifying, among the various quality
models presented in literature, the ones that are more in-line
with the developer’s vision of quality optimization, when they
explicitly mention that they are refactoring to improve them.

We start with reviewing literature studies, which propose
software quality attributes and their corresponding measure-
ment in the source code, in terms of metrics. Software quality
attributes are typically characterized by a high-level definition
whose interpretation open the possibility of multiple ways
to calculate them in the source code level. Thus, there is
little consensus on what would be the optimal match between
high-quality attributes, and code-level structural and design
metrics. For instance, as shown later in Section II, the notion
of complexity was the subject of many studies that proposed
several metrics to calculate it. Therefore, we investigate which
code-level metrics are more representative to the high-level
quality attributes, when their optimization is explicitly stated
by the developer, when applying refactorings.

Practically, we have classified 1,245 commits, as quality
improvement commits, by manually analyzing their messages
and identifying an explicit statement of improving an internal
quality attribute, along with detecting their refactoring activ-
ities. We mined these commits from 3,795 well-engineered,
open-source projects. We identify their refactoring operations
by applying state-of-the-art refactoring mining tools [38], [48].
We refine our dataset by untangling each commit to only
select refactored code elements. Then, we cluster commits
according to the quality attribute they state they are optimizing
(complexity, inheritance, etc.). Afterward, for each quality
attribute, we calculate the values of its corresponding structural
metrics, in the files, before and after their refactorings. And



finally, we empirically compare the variation of these values,
to distinguish the metrics that are significantly impacted by the
refactorings, and so they better reflect the developer’s intention
of optimizing its corresponding quality attribute. To the best
of our knowledge, no previous study has investigated the
relationship between quality attributes and their corresponding
structural metrics, from the developer’s perception. Our key
findings show that not all state of the art structural metrics
equally represent internal quality attributes; some quality at-
tributes are being more emphasized than others by developers.
This paper extends the existing knowledge of empirically
investigating exploring the relationship between refactoring
and quality as follows:

1) We extensively review the literature of quality attributes,
used in the literature of software quality, and their cor-
responding possible measurements, in terms of metrics.
Then we mine a large scale dataset from GitHub1 that
consist of 1,245 commits from 3,795 software projects,
proven to contain refactoring operations, and illustrating
developers self-stated intentions to optimize our studied
quality attributes.

2) For each quality attribute, we empirically investigate
which metrics are most impacted by refactorings, and so,
the closest to capture the developer’s intention.

3) For reproducibility and extension, we provide a dataset
of commits, their refactoring operations, and their impact
on several quality metrics2.

The remainder of this paper is organized as follows: Section
II reviews the existing studies related to measuring software
quality and analyzing the relationship between quality attrib-
utes and refactoring. Section III outlines our empirical setup
in terms of data collection, analysis and research questions.
Section IV discusses our findings, while Section V captures
any threats to the validity of our work, before concluding with
Section VI.

II. RELATED WORK

It is widely acknowledged in the literature of software
refactoring that it has the ultimate goal to improve software
quality and fix design and implementations bad practices [14].
In recent year, there is much research efforts have focused on
studying and exploring the impact of refactoring on software
quality [2], [3], [5], [6], [17], [25], [35], [50]. The vast majority
of studies have focused on measuring the internal and external
quality attributes to determine the overall quality of a software
system being refactored. In this section, we review and discuss
the relevant literature on the impact of refactoring on software
quality.

In an academic setting, Stroulia and Kapoor [41] investigate
the effect of size and coupling measures on software quality
after the application of refactoring. The results in Stroulia
and Kapoor’s work showed that size and coupling metrics
decreased after refactorings. Kataoka et al. [21] used only

1https://github.com
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coupling measures to study the impact of Extract Method
and Extract Class refactoring operations on the maintainability
of a single C++ software system, and found that refactoring
has positive impact on system maintainability. Demeyer [9]
performed a comparative study to investigate the impact of
refactoring on performance. The results of Demeyer’s study
show that program performance is enhanced after the ap-
plication of refactoring. Moreover, Sahraoui et al. [34] used
coupling and inheritance measures to automatically detect
potential antipatterns and predict situations where refactoring
could be applied to improve software maintainability. The
authors found that quality metrics can help to bridge the gap
between design improvement and its automation, but in some
situations the process cannot be fully automated as it requires
the programmer’s validation through manual inspection.

Tahvildari et al. [44] proposed a software transformation
framework that links software quality requirements like per-
formance and maintainability with program transformation to
improve the target qualities. The results show that utilizing
design patterns increase system’s maintainability and perform-
ance. In another study, Tahvildari and Kontogiannis [43] used
the same framework to evaluate four object-oriented measures
(i.e., cohesion, coupling, complexity, and inheritance) in addi-
tion to software maintainability. Leitch and Stroulia [22] used
dependency graph-based techniques to study the impact of two
refactorings, namely, Extract Method and Move Method, on
software maintenance using two small systems. The authors
found that refactoring enhanced the quality by (1) reducing the
design size, (2) increasing number of procedures, (3) reducing
the data dependencies, and (4) reducing regression testing.
Bios and Mens [13] proposed a framework to analyze the
impact of three refactorings on five internal quality attributes
(i.e., cohesion, coupling, complexity, inheritance, and size),
and their findings show positive and negative impacts on the
selected measures. Bios et al. [11] provided a set of guidelines
for optimizing cohesion and coupling measures. This study
shows that the impact of refactoring on these measures ranged
from negative to positive. In a follow-up work, Bios et al. [12]
conducted a study to differentiate between the application of
Refactor to Understand and the traditional Read to Understand
pattern. Their findings show that refactoring plays a role in
improving the understandability of the software.

Geppert et al. [15] investigated the impact of refactoring
on changeability focusing on three factors for changeability,
namely, customer-reported defect rates, change effort, and
scope of changes. Their findings show a significant decrease
in the first two factors. Ratzinger et al. [33] analyzed the
historical data of a large industrial system and focused on
reducing change couplings. Based on the identified change
couplings, they also analyzed code smell changes for the
purpose of identifying where to apply refactoring efficiently.
They concluded that refactoring is able to enhance software
evolvability (i.e., reduce the change coupling). In an agile
development environment, Moser et al. [26] used internal
measures (i.e., CK, MCC, LOC) to explore the effect of
refactoring on the reusability of the code using a commer-



Table (I) A summary of the literature on the impact of refactoring activities on software quality attributes.
Study Year Approach Software Metric Internal QA External QA

Sahraoui et al. [34] 2000 Analyzing code histories CLD / NOC / NMO / NMI Inheritance / Coupling Fault-proneness / Maintainability
NMA / SIX / CBO / DAC
IH-ICP / OCAIC / DMMEC / OMMEC

Stroulia & Kapoor [41] 2001 Performing a case study LOC / LCOM / CC Size / Coupling Design extensibility
Kataoka et al. [21] 2002 Analyzing code histories Coupling measures Coupling Maintainability
Demeyer [9] 2002 Analyzing code histories N/A Polymorphism Performance
Tahvildari et al. [44] 2003 Analyzing code histories LOC / CC / CMT / Halstead’s efforts Complexity Performance / Maintainability
Leitch & Stroulia [22] 2003 Analyzing code histories SLOC / No. of Procedure Size Maintainability
Bois & Mens [13] 2003 Analyzing code histories NOM / CC / NOC / CBO Inheritance / Cohesion / Coupling / Size / Complexity N/A

RFC / LCOM
Tahvildari & Kontogiannis [43] 2004 Analyzing code histories LCOM / WMC / RFC / NOM Inheritance / Cohesion / Coupling / Complexity Maintainability

CDE / DAC / TCC
Bois et al. [11] 2004 Analyzing code histories N/A Cohesion / Coupling Maintainability
Bois et al. [12] 2005 Analyzing code histories N/A N/A Understandability
Geppert et al. [15] 2005 Performing a case study N/A N/A Changeability
Ratzinger et al. [33] 2005 Mining commit log N/A Coupling Evolvability

Analyzing code histories
Moser et al. [26] 2006 Analyzing code histories CK / MCC / LOC Inheritance / Cohesion / Coupling / Complexity Reusability
Wilking et al. [50] 2007 Analyzing code histories CC / LOC Complexity Maintainability / Modifiability
Stroggylos & Spinells [40] 2007 Mining commit log CK / Ca / NPM Inheritance / Cohesion / Coupling / Complexity N/A
Moser et al. [25] 2008 Analyzing code histories CK / LOC / Effort (hour) Cohesion / Coupling / Complexity Productivity
Alshayeb [2] 2009 Analyzing code histories CK / LOC / FANOUT Inheritance / Cohesion / Coupling / Size Adaptability / Maintainability / Testability / Reusability

Understandability
Hegedus et al. [17] 2010 Analyzing code histories CK Coupling / Complexity / Size Maintainability / Testability / Error Proneness / Changeability

Stability / Analizability
Shatnawi & Li [35] 2011 Analyzing code histories CK / QMOOD Inheritance / Cohesion / Coupling / Polymorphism / Size Reusability / Flexibility / Extendibility / Effectiveness

Encapsulation / Composition / Abstraction / Messaging
Bavota et al. [4] 2013 Analyzing code histories ICP / IC-CD / CCBC Coupling N/A

Surveying developers
Szoke et al. [42] 2014 Mining commit log CC / U / NOA / NII / NAni Size / Complexity N/A

Surveying developers LOC / NUMPAR / NMni / NA
Bavota et al. [3] 2015 Mining commit log CK / LOC / NOA / NOO Inheritance / Cohesion / Coupling / Size / Complexity N/A

Analyzing code histories C3 / CCBC
Cedrim at al. [5] 2016 Mining commit log LOC / CBO / NOM / CC Cohesion / Coupling / Complexity N/A

Analyzing code histories FANOUT / FANIN
Chavez et al. [6] 2017 Mining commit log CBO / WMC / DIT / NOC Inheritance / Cohesion / Coupling / Size / Complexity N/A

Analyzing code histories LOC / LCOM2 / LCOM3 / WOC
TCC / FANIN / FANOUT / CINT
CDISP / CC / Evg / NPATH
MaxNest / IFANIN / OR / CLOC
STMTC / CDL / NIV / NIM / NOPA

Pantiuchina et al. [31] 2018 Mining commit log LCOM / CBO / WMC / RFC Cohesion / Coupling / Complexity Readability
Analyzing code histories C3 / B&W / SRead

cial system, and found that refactoring was able to improve
the reusability of hard-to-reuse classes. Wilking et al. [50]
empirically studied the effect of refactoring on non-functional
aspects, i.e., the maintainability and modifiability of system
systems. They tested the maintainability by explicitly adding
defects to the code, and then measured the time taken to
remove them. Modifiability, on the other hand, was examined
by adding new functionalities and then measuring the LOC
metric and the time taken to implement these features. The
authors did not find a clear effect of refactoring on these two
external attributes.

Stroggylos and Spinellis [40] opted for searching words
stemming from the verb “refactor" such as “refactoring” or
“refactored” to identify refactoring-related commits to study
the impact of refactoring on quality using eight object-oriented
metrics. Their results indicated possible negative effects of
refactoring on quality, e.g., increased LCOM metric. Moser et
al. [25] studied the impact of refactoring on the productivity
in an agile team. The achieved results show that refactoring
improved software developers’ productivity besides several
aspects of quality, e.g., maintainability. Alshayeb [2] con-
ducted a study aiming at assessing the impact of eight re-
factorings on five external quality attributes (i.e., adaptability,
maintainability, understandability, reusability, and testability).
The author found that refactoring could improve the quality
in some classes, but could also decrease software quality to
some extent in other classes. Hegedus et al. [17] examined
the effect of singular refactoring techniques on testability,
error proneness, and other maintainability attributes. They
concluded that refactoring could have undesired side effects

that can degrade the quality of the source code.

In an empirical setting, Shatnawi and Li [35] used the
hierarchical quality model to assess the impact of refactoring
on four software quality factors, namely, reusability, flexibility,
extendibility, and effectiveness. The authors found that the
majority of refactoring operations exhibit positive impact on
quality; however, some operations deteriorated quality. Bavota
et al. empirically investigated the developers’ perception of
coupling, as captured by structural, dynamic, semantic, and
logical coupling measures. They found that semantic coupling
measure aligns with developers’ perceptions better that the
other coupling measures. In a more recent study, Bavota
et al. [3] used RefFinder [32], a version-based refactoring
detection tool, to mine the evolution history of three open-
source systems. They mainly investigated the relationship
between refactoring and quality. The study findings indicate
that 42% of the performed refactorings are affected by code
smells, and refactorings were able to eliminate code smells in
only 7% of the cases.

Cedrim et al. [5] conducted a longitudinal study of 25
projects to investigate the improvement of software structural
quality. They analyzed the relationship of refactorings and
code smells by classifying refactorings according to the ad-
dition or removal of poor code structures. The study results
indicate that only 2.24% of refactorings removed code smells,
and 2.66% introduced new ones. Recently, Chavez et al.
[6] studied the effect of refactoring on five internal quality
attributes, namely, cohesion, coupling, complexity, inheritance,
and size, using 25 quality metrics. The study shows that root-
canal refactoring-related operations are either improved or at



least not worsened the internal quality attributes. Additionally,
when floss refactoring-related operations are applied, 55% of
these operations improved these attributes, while only 10% of
quality declined.

In particular, two studies [31], [42] are most related to our
work have analyzed the comment commits in which developers
stated the purpose of improving the quality. Szoke et al. [42]
studied 198 refactoring commits of five large-scale industrial
systems to investigate the effects of these commits on quality
of several revisions for a period of time. To know the purpose
of the applied refactorings, they trained developers and asked
them to state the reason when committing the changes to
the repositories, which could be related to (1) fix coding
issues, (2) fix antipatterns, and (3) improve certain metrics.
The study results show that performing a single refactoring
could negatively impact the quality, but applying refactorings
in blocks (e.g., fixing more coding issues or improving more
quality metrics) can significantly improve software quality.
More recently, Pantiuchina et al. [31] empirically investigated
the correlation between seven code metrics and the quality im-
provement explicitly reported by developers in 1,282 commit
messages. The study shows that quality metrics sometimes do
not capture the quality improvement reported by developers. A
common indicator to assess the quality improvements between
these studies resides in the use the quality metrics. Both
of these studies found that minor refactoring changes rarely
impact the quality of the software.

All of the above-mentioned studies have focused on as-
sessing the impact of refactorings on the quality by either
considering the internal or the external quality attributes using
a variety of approaches. Among them, few studies [3], [5], [6],
[31], [33], [40], [42] took the approach of mining software
repositories to explore the impact on quality. In particular, the
vast majority of these studies, used a limited set of projects
and mined general commits without applying any form of
verification regarding whether refactorings have actually been
applied.

Our work is different from these studies as our main purpose
is to explore if there is an alignment between quality metrics
and quality improvements that are documented by developers
in the commit messages. As we summarize these state-of-
the-art studies in Table I. We identify 8 popular quality at-
tributes, namely Cohesion, Coupling, Complexity, Inheritance,
Polymorphism, Encapsulation, Abstraction and Design size.
As different studies advocate for various metrics to calculate
these quality attributes, we extract and calculate 27 structural
metrics. In particular, on a more qualitative sense, we conduct
an empirical study using 1,245 commits that are proven to
contain real-world instances of refactoring activities, in the
purpose of improving software design. To the best of our
knowledge, no previous study has empirically investigated,
using a curated set of commits, the representativeness of
structural design metrics for internal quality attributes. In
the next section, we detail the steps we took to design our
empirical setup.

III. EMPIRICAL STUDY SETUP

This section presents our empirical study. Our main goal
is to investigate whether the developer perception of quality
improvement (as expected by developers) aligns with the
real quality improvement (as assessed by quality metrics). In
particular, we address the following research question:
• Do the developer perception of quality improvement align

with the quantitative assessment of code quality?
To answer our research question, we conduct a three-phased

empirical study. An overview of the experiment methodology
is depicted in Figure 1. The initial phase consists of selecting
and mining a large number of open-source Java projects and
detecting refactoring instances that occur throughout their
development history, i.e., commit-level code changes, of each
considered project. The second phase consists of analyzing
the commit messages as a mean of identifying refactoring
commits in which developers document their perception of
internal quality attributes. Thereafter, the third phase involves
the selection of software quality metrics to compare its values
before and after the selected refactoring commits.

A. Selection of Quality Attributes and Structural Metrics

To setup a comprehensive set of quality attributes, to be
assessed in our study, we first conduct a literature review
on existing and commonly acknowledged software quality
attributes [7], [10], [19], [23], [24], [30]. Then, we checked
if the metrics assess several object-oriented design aspects in
order to map each internal quality attribute to the appropriate
structural metric(s). For example, the Response For Class
(RFC) metric is typically used to measure Coupling and
Complexity quality attributes. More generally, we extract, from
literature review, all the associations between metrics (e.g., CK
suite [7], McCabe [24] and Lorenz and Kidd’s book [23]) with
internal quality attributes.

The extraction process results in 19 distinct structural met-
rics as shown in Table II. The list of metrics is (1) well-
known and defined in the literature, and (2) can assess on
different code-level elements, i.e., method, class, package, and
(3) can be calculated by existing static analysis tools. For this
study, all metrics values are automatically computed using the
UNDERSTAND3, a popular static analysis framework.

B. Refactoring Detection

To collect the necessary commits, we refer to an existing
large dataset of links to GitHub repositories. [1]. We perform
an initial filtering, using Reaper [27], to only navigate through
well-engineered projects. So, we ended up reducing the num-
ber of selected projects from 57,447 to 3,795. To extract the
entire refactoring history in each project, we use two popular
refactoring mining tools, namely Refactoring Miner [37] and
ReffDiff [38]. We selected both tools because they are known
to be in the top of refactoring detection tools, in terms of
accuracy [45], [48] (precision of 98% and 100%, and recall
of 87% and 88%, respectively), and because they are both built

3https://scitools.com/
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Figure (1) Empirical study design overview.

Table (II) Internal quality attributes and their corresponding
structural metrics used in this study.

Quality Attribute Study Software Metrics

Cohesion [6], [31] Lack of Cohesion of Methods (LCOM) [7]
Coupling [6], [31] Coupling Between Objects (CBO) [7]

[31] Response For Class (RFC) [7]
[6] Fan-in (FANIN) [19]
[6] Fan-out (FANOUT) [19]

Complexity [6] Cyclomatic Complexity (CC) [24]
[6], [31], [39] Weighted Method Count (WMC) [7]
[29], [39] Response For Class (RFC) [7]
[39] Lack of Cohesion of Methods (LCOM) [7]
[6] Essential Complexity (Evg) [24]
[6] Paths (NPATH) [30]
[6] Nesting (MaxNest) [23]

Inheritance [6], [39] Depth of Inheritance Tree (DIT) [7]
[6], [39] Number of Children (NOC) [7]
[6] Base Classes (IFANIN) [10]

Polymorphism [39] Weighted Method Count (WMC) [7]
[29], [39] Response For a Class (RFC) [7]

Encapsulation [39] Weighted Method Count (WMC) [7]
[39] Lack of Cohesion of Methods (LCOM) [7]

Abstraction [39] Weighted Method Count (WMC) [7]
[39] Lack of Cohesion of Methods (LCOM) [7]

Design Size [6] Lines of Code (LOC) [23]
[6] Lines with Comments (CLOC) [23]
[6] Statements (STMTC) [23]
[6] Classes (CDL) [23]
[6] Instance Variables (NIV) [23]
[6] Instance Methods (NIM) [23]

in analyze code changes in git repositories to detect applied
refactorings, which is the case for our intended data, along
with being suitable for our study that requires a high degree
of automation in data mining. As for the selection of commits
with refactorings, we perform a voting process between both
tools, i.e., in order for a given commit to be selected, it
has to be detected by both tools as a container to at least
one refactoring operation. We perform this voting process to
raise the likelihood of the existence of refactoring within the
commit. Since the accuracy of the tools is out of the scope of
this work, and since we do not perform any refactoring-related
analysis, we do not care if the detection results overlap or not.

In this phase, We collect a total of 1,208,970 refactoring
operations from 322,479 commits, applied during a period of
23 years (1997-2019). An overview of the studied benchmark
is provided in Table III.

Table (III) Studied dataset statistics.

Item Count

Studied projects 3,795
Commits with refactorings 322,479
Refactoring operations 1,208,970
Commits with refactorings & Keywords 2,312
Remove false positive commits 1,067
Final dataset 1,245



C. Data Extraction

After extracting all refactoring commits, we continue to
filter them, using the content of their messages at this stage.
We start with using a keyword-based search to find commits
whose messages contain one of the keywords (i.e., Cohesion,
Coupling, Complexity, Inheritance, Polymorphism, Encapsula-
tion, Abstraction, size) related to our internal quality attributes.

This keyword-based filtering resulted in only selecting 2,312
commit messages. We notice that the ratio of these commits
is very small in comparison with the total number of refact-
oring commits, i.e., 322,479. However, these observations are
aligned with previous studies [28], [42] as developers typically
do not provide details when they document their refactorings.
To ensure that these commits reported developers’ intention
to improve quality attributes, we manually inspect and read
through these refactoring commits to remove false positives.
An example of a discarded commit is: “Refactored Ephemer-
alFileSystemAbstraction”, we discarded this commit because
the quality attribute is actually part of the identifier name
of the class. In case of agreement between the authors on
the inclusion of a certain commit, the commit was excluded.
This step resulted in only considering 1,245 commits. During
this process, we manually classified our 1,245 commits with
respect to their quality attributes, as one commit could belong
to more than one quality attribute. Our goal is to have a gold
set of commits in which the developers explicitly reported
the quality attributes improvement. This gold set will serve
to check later if there is an alignment between the real
quality metrics affected in the source code and the quality
improvement documented by developers. Examples of commit
messages belonging to the gold set, are showcased in Table
IV.

Since commits typically contain multiples changed files,
which may not all be involved in the refactoring, we make to
filter them out, as we checkout, for each commit, its changed
Java files, and keep only those involved in the refactoring oper-
ation(s), associated with that commit. The resulting commits,
correspond to our data points, each data point is represented by
a set of pre-refactoring and post-refactoring Java files. These
data points will be used in the experiments, to measure the
effect of changes in terms of structural metrics, with respect
to the quality attribute, announced in the commit message.

IV. EMPIRICAL STUDY RESULTS & DISCUSSION

For each refactoring commit having a documented internal
quality attribute by developers, we compute the corresponding
metric values (see Table II) before and after the commit.
For instance, for commit messages related to reducing the
complexity of the source code, we calculate seven corres-
ponding metric values before and after the selected refact-
oring commit, i.e., Cyclomatic Complexity (CC), Weighted
Method Count (WMC), Response For Class (RFC), Lack of
Cohesion of Methods (LCOM), Essential Complexity (Evg),
Paths (NPATH), and Nesting (MaxNest) [7], [23], [24], [30],
as shown in Table II. As we calculate the metrics values of
pre- and post-refactoring, we want to distinguish, for each

metric, whether there is a variation on its pair of values,
whether this variation indicates an improvement, and whether
that variation is statistically significant. Therefore, we use the
Wilcoxon test, a non-parametric test, to compare between the
group of metric values before and after the commit since these
groups are dependent on one another. The Null hypothesis
is defined by no variation in the metric values of pre- and
post-refactored code elements. Thus, the alternative hypothesis
indicates that there is a variation in the metric values. In each
case, a decreased metric value is considered desirable (i.e., an
improvement). Additionally, the variation between values of
both sets of is considered significant its associated p-value is
less than 0.005. It is important to note that, in many cases, the
same metric is used to evaluate several quality attributes. In
the following, we report the results of our research questions.

The boxplots in Figure 2 show the distribution of each
metric before and after each of the examined commits.

To answer our main research question, we provide a detailed
analysis of each of the eight quality attributes as reported in
Table II. Table V shows the overall impact of refactorings on
quality.

1) Cohesion: For commits whose messages report the
optimization of the cohesion quality attribute, the boxplot
sketched in Figure 2a shows the pre- and post-refactoring
results of the normalized LCOM, used in literature to estimate
the cohesion. A poor LCOM metric value implies generally
that the classes should be split into 1 or more classes with
better cohesion. Thus, if the value of this metric is low,
it indicates a strong cohesiveness of the class. We have
selected the normalized LCOM metric as it has been widely
acknowledged in the literature [6], [18], [31] as being the
alternative to the original LCOM, by addressing its main
limitations (artificial outliers, misperception of getters and
setters, etc.). As can be seen from the boxplot in Figure 2a,
the median drops from 28.12 to 25.86 and the third quartile
is significantly lower which shows a decrease in variation for
commits after refactoring. This result indicates that LCOM is
capturing the developer’s intention of optimizing the cohesion
quality attribute. Furthermore, as shown in Table V, LCOM
has a positive impact on cohesion quality, as it decreases in the
refactored code. This implies that developers did improve the
cohesion of their classes, as outlined in their commit messages.

Summary. The normalized LCOM metric does not only
represent a good replacement to the original LCOM,
but also represents the cohesion quality attribute. Its
positive variation is in line with the developer’s inten-
tion in improving cohesion.

2) Coupling: For commits whose messages report the
optimization of the coupling quality attribute, the boxplots
sketched in Figures 2b, 2c, 2d, 2e show the pre- and post-
refactoring results of four structural metrics, i.e., CBO, RFC,
FANIN, and FANOUT, used in literature to estimate the
coupling. We observe from the figure that three out of the
four coupling metrics experienced a degradation in the median



(a) Cohesion - LCOM (b) Coupling - CBO (c) Coupling - FANIN (d) Coupling - FANOUT

(e) Coupling - RFC (f) Complexity - CC (g) Complexity - WMC (h) Complexity - RFC

(i) Complexity - LCOM (j) Complexity - Evg (k) Complexity - NPATH (l) Complexity - MaxNest

(m) Inheritance - DIT (n) Inheritance - NOC (o) Inheritance - IFANIN (p) Polymorphism - WMC

(q) Polymorphism - RFC (r) Encapsulation - WMC (s) Encapsulation - LCOM (t) Abstraction - WMC

(u) Abstraction - LCOM (v) Design Size - LOC (w) Design Size - CLOC (x) Design Size - STMTC

(y) Design Size - CDL (z) Design Size - NIV (aa) Design Size - NIM

Figure (2) Boxplots of metrics values of pre- and post-refactored files.



Table (IV) Examples of selected commit messages.

Quality Attribute Commit Message

Cohesion Refactor code for better cohesion
Coupling Reduce coupling between packages
Complexity reducing complexity by refactoring
Inheritance refactored document requests code to better reflect inheritance ...
Polymorphism Enhance field manager to account for polymorphism when getting a field from a ceiling class
Encapsulation Refactored transactional observer code for better encapsulation and runtime performance
Abstraction code refactored in order to improve the abstraction
Design Size Major refactoring to reduce code size and have at least halfway reasonable structure ...

values. For instance, CBO, FANIN and FANOUT medians
dropped, respectively, from 1.19 to 1.00, from 5.94 to 5.91, and
from 2.75 to 2.68. Coupling Between Objects (CBO) counts
of the number of classes that are coupled to a particular class
either through method or attribute calls. Calls are counted
in both directions. CBO values have significantly decreased,
which makes it a good representative of coupling. FANIN
represents how useful is a code element to other code elements,
while FANOUT counts the number of outsider code elements,
a particular code element depends on. While both metrics are
found to be degrading as developers intend to optimize coup-
ling, only the FANOUT’s variation was statistically significant.
Interestingly, the Response for a Class (RFC), which counts
the visibility of a class to outsider classes, has increased as
developers intend to optimize coupling. In theory, increasing
the visibility of a class increases the possibility to other classes
to reach it, and so, it increases its coupling. However, this does
not necessarily hold according to our results, but the variation
is not statistically significant.

The manual inspection, of the refactored code, indicates that
developers typically decrease coupling by reducing (1) the
strength of dependencies that exist between classes, (2) the
message flow of the classes, and (3) the number of inputs
a method uses plus the number of subprograms that call
this method. The code was improved as expected from the
developer intentions in their commit message.

Summary. CBO, FANIN and FANOUT generally de-
crease as developer intends to improve coupling. How-
ever, only CBO and FANOUT variation is significant.
RFC exhibits an opposite variation to coupling, but it is
not statistically significant. Finally, at least one metric
has a significant positive variation which matches the
developer’s perception of improving coupling.

3) Complexity: As for the complexity quality attribute,
we consider seven literature metrics, shown in Table II, to
investigate the code complexity reduction as perceived by de-
velopers. As seen in the boxplots in Figures 2f, 2g, 2j, 2k, 2l,
we observe that the majority metrics i.e., CC, WMC, Evg,
NPATH, and MaxNest, experienced a degradation in the
median values. Furthermore, all the variations are statistically

significant. Despite being associated with several, metrics,
which are different in their definitions, our results indicate that
5 out the 7 metrics, accurately represent the complexity quality
attribute. Moreover, RFC’s opposed increase, when optimizing
complexity, is found to be statistically significant.

In particular, we observe through a manual inspection of the
collected dataset that developers tend to reduce the number
of local methods, simplify the structure statements, reduce
the number of paths in the body of the code, and lower the
nesting level of the control statements (e.g., selection and loop
statements) in the method body.

Summary. CC, WMC, Evg, NPATH, and MaxNest
generally decrease as developer intends to improve
complexity, and all their variation is significant. Fur-
thermore, our empirical investigation discards RFC
from being an indicator for complexity. Finally, at least
one metric has a significant positive variation which
matches the developer’s perception of improving com-
plexity.

4) Inheritance: For commits whose messages report the
optimization of the inheritance quality attribute, the boxplots
sketched in Figures 2m, 2n, 2o show the pre- and post-
refactoring results of three structural metrics, i.e., DIT, NOC,
and IFANIN, used in literature to estimate the inheritance. We
observe that only one metric out of the three experienced a
degradation in the median values. For instance, the median
decreases from 1.09 to 1.00 for DIT, whereas the medians
increase from 0.15 to 0.19 and from 1.13 to 1.14 for NOC and
IFANIN respectively. This indicates that developers probably
decrease the depth of the hierarchy by adding more methods
for a class to inherit, increasing the number of immediate sub-
classes, and increasing the number of immediate base classes.
Although we observed certain cases that show inheritance
improvement as perceived by developers, the overall depth of
the inheritance tree and the number of immediate subclasses
and superclasses did not decrease. The interpretation of the
metric improvement highly depends on the quality of the code
and the developer’s design decisions. The statistical test shows
that the differences are statistically significant for DIT and
NOC, but they are not for IFANIN.



Summary. DIT generally decreases as developer in-
tends to improve inheritance, and its variation is sig-
nificant. IFANIN exhibit opposite variations to inherit-
ance, but it is not statistically significant. Furthermore,
our empirical investigation discards NOC from being
an indicator for inheritance. Finally, at least one metric
has a significant positive variation which matches the
developer’s perception of improving inheritance.

5) Polymorphism: For commits whose messages report
the optimization of the polymorphism quality attribute, the
boxplots sketched in Figures 2p, 2q show the pre- and post-
refactoring results of two structural metrics, i.e., WMC and
RFC, used in literature to estimate the polymorphism. We
observe that none of these metrics experienced a degradation
in the median values.

The concept of polymorphism is closely related to inherit-
ance. When developers inherit instance variables and methods
from another class, polymorphism techniques allow the sub-
classes to use these variables and methods to perform different
tasks. For this quality attribute, we observe similar trends to
inheritance. There is a rise in the median for both WMC and
RFC. When developers explicitly refer to polymorphism aspect
improvement as a target in the commit messages, they tend
to increase the number of local and inherited methods. The
statistical test shows that the differences are not statistically
significant.

Summary. WMC and RFC exhibit opposite variations
to polymorphism, but they are not statistically signi-
ficant. Therefore, we could not find any metric that
has a significant positive variation which matches the
developer’s perception of improving polymorphism.

6) Encapsulation: For commits whose messages report
the optimization of the encapsulation quality attribute, the
boxplots sketched in Figures 2r, 2s show the pre- and post-
refactoring results of two structural metrics, i.e., WMC and
the normalized LCOM, used in literature to estimate the
encapsulation. We observe that both metrics experienced a
degradation in the median values. However, the variations are
statistically significant.

From a qualitative perspective, we observe that developers
prevent access to attributes and methods by defining them to be
private and enclosing them within a single construct. Although
the results for the encapsulation metrics are not statistically
significant, the significant results for cohesion and complexity-
related commits discussed previously might indicate that the
information hiding mechanism could generally help in redu-
cing the complexity of the software systems when developers
are actually limiting the inter-dependencies between compon-
ents, and thus promote cohesion and modularity.

Summary. WMC and the normalized LCOM generally
decrease as developer intends to improve encapsula-
tion, but their variations are not significant. Therefore,
we could not find any metric that has a significant
positive variation which matches the developer’s per-
ception of improving encapsulation.

7) Abstraction: For this quality attribute that is measuring
the generalization-specialization aspect of the design, we no-
ticed an improvement of both the WMC and the normalized
LCOM metrics, as shown in Figures 2t, 2u. The differences
are not statistically significant as shown from the statistical
test. Using this attribute, developers seem to practically handle
the complexity of the methods when adding one or more
descendants by actually hiding the implementation details, and
increasing the class cohesion.

Summary. WMC and the normalized LCOM generally
decrease as developer intends to improve abstraction,
but their variations are not significant. Therefore, we
could not find any metric that has a significant positive
variation which matches the developer’s perception of
improving abstraction.

8) Design Size: For commits whose messages report the
optimization of the design size quality attribute, the boxplots
sketched in Figures 2v, 2w, 2x, 2y, 2z, 2aa show the pre-
and post-refactoring results of five structural metrics, i.e.,
LOC, CLOC, STMTC, CDL, NIV, NIM, used in literature
to estimate the design size. We notice the improvement of
four metrics, namely CLOC, CDL, NIV, and NIM after the
commits in which developers explicitly target the improvement
of the size of the classes. As can be seen in the box plots,
the medians decreased in general. On the other hand, we
notice an increase in LOC and STMTC. Regardless of the
increase or decrease of metric values, their variations are not
statistically significant. This indicates that developers reduce
(1) line containing comments, (2) the number of classes and
(3) the number of declared instance variables and methods.
As for LOC and STMTC, we observed minor increases in the
metric values.

Summary. CLOC, CDL, NIV, and NIM generally de-
crease as developer intends to improve design size,
but their variations are not significant. Therefore, we
could not find any metric that has a significant positive
variation which matches the developer’s perception of
improving design size.

V. THREATS TO VALIDITY

Our study has used a few thousands of refactoring commits
in various systems. Since the analysis was not carried out in
a controlled environment, few threats are discussed in this
section as follows:



Table (V) Effect of refactoring on structural metrics,
clustered by their corresponding internal quality attribute. bold
indicates statistical significance. italic indicates improvement.

Quality Attribute Metric Impact p-value

Cohesion LCOM +ve 0.0346
Coupling CBO +ve 0.0400

RFC -ve 0.2729
FANIN +ve 0.2338
FANOUT +ve 0.0456

Complexity CC +ve 0.0001
WMC +ve 0.0062
RFC -ve 0.0021
LCOM -ve 0.2431
Evg +ve 0.0010
NPATH +ve < 0.0001
MaxNest +ve 0.0026

Inheritance DIT +ve 0.0439
NOC -ve 0.0208
IFANIN -ve 0.3987

Polymorphism WMC -ve 0.5137
RFC -ve 0.7983

Encapsulation WMC +ve 0.1769
LCOM +ve 0.7737

Abstraction WMC +ve 0.1924
LCOM +ve 0.6988

Design Size LOC -ve 0.8245
CLOC +ve 0.7855
STMTC -ve 0.3311
CDL +ve 0.4870
NIV +ve 0.2757
NIM +ve 0.6043

Internal Validity. Our analysis is mainly threatened by the
accuracy of the refactoring mining tools because the tool may
miss the detection of some refactorings. However, previous
studies [37], [48] report that Refactoring Miner has high
precision and recall scores compared to other state-of-the-art
refactoring detection tools, which gives us confidence in using
the tool. Another potential threat to validity relates to commit
messages. This study does not exclude commits containing
tangle code changes [20], in which developers performed
changes related to different tasks and one of these tasks could
be related to quality enhancement. If these changes were
committed at once, there is a possibility that the individual
changes are merged and cannot trace it back to the original
task. We did not consider filtering out such changes in this
study. Moreover, our manual analysis is a time consuming
and error prone task, which we tried to mitigate by focusing
mainly on commits known to contain refactorings.

Another potential threat to validity is the sample bias, where
the choice of the data may directly impact the results. There-
fore, we explored a large sample of projects, we made sure
they are well engineered to ensure the quality of the findings
along with diversifying the sources to reduce the bias of data
belonging to the same entity. During our qualitative analysis,
we considered only commits where a consensus between
authors was made about whether a commit is clearly stating
that it is optimizing a particular quality attributes. Commits
which were debatable were discarded. We also provide our
dataset online for further refinement and analysis.

External Validity. Our analysis was limited to only open
source Java projects. However, we were still able to analyze
3,795 projects that are well-commented, and varied in size,

contributors, number of commits and refactorings.
Construct Validity. A potential threat to construct validity

relates to the set of metrics as it may miss some properties of
the selected internal quality attributes. To mitigate this threat,
we select well-known metrics that cover various properties of
each attribute as reported in the literature [7].

VI. CONCLUSION

Software developers do explicitly report target quality im-
provements in the commit messages of versioned repositories.
In this work, we performed an exploratory study to investigate
the alignment between quality improvement and software
design metrics by focusing on 8 internal quality attributes and
19 distinct quality metrics. In summary, the main conclusions
are:

• A variety of structural metrics can represent the internal
quality attributes considered in this study. Based on our
empirical investigation, for metrics that are associated
with quality attributes, there are different degrees of
improvement and degradation of software quality.

• Most of the metrics that are mapped to the main qual-
ity attributes, i.e., cohesion, coupling, and complexity,
do capture developer intentions of quality improvement
reported in the commit messages. In contrast, there is
also a case in which the metrics do not capture quality
improvement as perceived by developers. We summarize
our findings as follows:
– Cohesion. In contrast with previous studies, cohesion

tends to be well represented by LCOM as we found the
metrics to be significantly improved in the refactored
code (p-value ≤ 0.05).

– Coupling. Similarly to cohesion, optimizing the coup-
ling quality attribute was empirically measured using
both CBO and FANOUT (p-value ≤ 0.05), in compar-
ison with FANIN and RFC.

– Complexity. One of the popular quality attributes that
is being approximated by developers using a variety of
metrics, namely CC, WMC, RFC, Evg, NPATH, and
MaxNest (p-value ≤ 0.05).

– Inheritance. While DIT has been found be the metric
that matches the developer’s perception (p-value ≤
0.05), NOC, known to be a measure for Inheritance
in literature, tends to increase instead in practice (p-
value ≤ 0.05).

– As for Encapsulation, Abstraction and Design Size.
We cannot find any metric that can represent de-
veloper’s intention of optimizing these quality attrib-
utes, and so these findings motivates a deeper invest-
igation on understanding the mismatch between theory
and practice.

As future work, we plan to empirically assess the impact
of external quality metrics (e.g., testability and readability)
as documented by developers in their commit messages on
quality and compare and contrast them with the findings for
the internal ones. This will give us an indication which quality
attributes are optimized the most by developers. Also, we plan



on investigating the impact of composed refactorings on each
of the quality attributes, in contrast with existing studies which
analyze each refactoring type individually. Another potential
research direction is to explore what factors might contribute
to the significant improvement of the quality metrics that
are aligned with developer perception tagged in the commit
messages (e.g., developer experience, proximity to release
date, and refactoring community culture).
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